6,807 research outputs found

    Generating probabilistic Boolean networks from a prescribed stationary distribution

    Get PDF
    Modeling gene regulation is an important problem in genomic research. Boolean networks (BN) and its generalization probabilistic Boolean networks (PBNs) have been proposed to model genetic regulatory interactions. BN is a deterministic model while PBN is a stochastic model. In a PBN, on one hand, its stationary distribution gives important information about the long-run behavior of the network. On the other hand, one may be interested in system synthesis which requires the construction of networks from the observed stationary distribution. This results in an inverse problem which is ill-posed and challenging. Because there may be many networks or no network having the given properties and the size of the inverse problem is huge. In this paper, we consider the problem of constructing PBNs from a given stationary distribution and a set of given Boolean Networks (BNs). We first formulate the inverse problem as a constrained least squares problem. We then propose a heuristic method based on Conjugate Gradient (CG) algorithm, an iterative method, to solve the resulting least squares problem. We also introduce an estimation method for the parameters of the PBNs. Numerical examples are then given to demonstrate the effectiveness of the proposed methods. © 2010 Elsevier Inc. All rights reserved.postprin

    Improved delineation of short cortical association fibers and gray/white matter boundary using whole-brain three-dimensional diffusion tensor imaging at submillimeter spatial resolution.

    Get PDF
    Recent emergence of human connectome imaging has led to a high demand on angular and spatial resolutions for diffusion magnetic resonance imaging (MRI). While there have been significant growths in high angular resolution diffusion imaging, the improvement in spatial resolution is still limited due to a number of technical challenges, such as the low signal-to-noise ratio and high motion artifacts. As a result, the benefit of a high spatial resolution in the whole-brain connectome imaging has not been fully evaluated in vivo. In this brief report, the impact of spatial resolution was assessed in a newly acquired whole-brain three-dimensional diffusion tensor imaging data set with an isotropic spatial resolution of 0.85 mm. It was found that the delineation of short cortical association fibers is drastically improved as well as the definition of fiber pathway endings into the gray/white matter boundary-both of which will help construct a more accurate structural map of the human brain connectome

    POCS-based reconstruction of multiplexed sensitivity encoded MRI (POCSMUSE): A general algorithm for reducing motion-related artifacts.

    Get PDF
    PURPOSE: A projection onto convex sets reconstruction of multiplexed sensitivity encoded MRI (POCSMUSE) is developed to reduce motion-related artifacts, including respiration artifacts in abdominal imaging and aliasing artifacts in interleaved diffusion-weighted imaging. THEORY: Images with reduced artifacts are reconstructed with an iterative projection onto convex sets (POCS) procedure that uses the coil sensitivity profile as a constraint. This method can be applied to data obtained with different pulse sequences and k-space trajectories. In addition, various constraints can be incorporated to stabilize the reconstruction of ill-conditioned matrices. METHODS: The POCSMUSE technique was applied to abdominal fast spin-echo imaging data, and its effectiveness in respiratory-triggered scans was evaluated. The POCSMUSE method was also applied to reduce aliasing artifacts due to shot-to-shot phase variations in interleaved diffusion-weighted imaging data corresponding to different k-space trajectories and matrix condition numbers. RESULTS: Experimental results show that the POCSMUSE technique can effectively reduce motion-related artifacts in data obtained with different pulse sequences, k-space trajectories and contrasts. CONCLUSION: POCSMUSE is a general post-processing algorithm for reduction of motion-related artifacts. It is compatible with different pulse sequences, and can also be used to further reduce residual artifacts in data produced by existing motion artifact reduction methods

    A spatiotemporal Data Envelopment Analysis (S-T DEA) approach:the need to assess evolving units

    Get PDF
    One of the major challenges in measuring efficiency in terms of resources and outcomes is the assessment of the evolution of units over time. Although Data Envelopment Analysis (DEA) has been applied for time series datasets, DEA models, by construction, form the reference set for inefficient units (lambda values) based on their distance from the efficient frontier, that is, in a spatial manner. However, when dealing with temporal datasets, the proximity in time between units should also be taken into account, since it reflects the structural resemblance among time periods of a unit that evolves. In this paper, we propose a two-stage spatiotemporal DEA approach, which captures both the spatial and temporal dimension through a multi-objective programming model. In the first stage, DEA is solved iteratively extracting for each unit only previous DMUs as peers in its reference set. In the second stage, the lambda values derived from the first stage are fed to a Multiobjective Mixed Integer Linear Programming model, which filters peers in the reference set based on weights assigned to the spatial and temporal dimension. The approach is demonstrated on a real-world example drawn from software development

    Tightness for a stochastic Allen--Cahn equation

    Full text link
    We study an Allen-Cahn equation perturbed by a multiplicative stochastic noise which is white in time and correlated in space. Formally this equation approximates a stochastically forced mean curvature flow. We derive uniform energy bounds and prove tightness of of solutions in the sharp interface limit, and show convergence to phase-indicator functions.Comment: 27 pages, final Version to appear in "Stochastic Partial Differential Equations: Analysis and Computations". In Version 4, Proposition 6.3 is new. It replaces and simplifies the old propositions 6.4-6.

    On the infrared behaviour of 3d Chern-Simons theories in N=2 superspace

    Full text link
    We discuss the problem of infrared divergences in the N=2 superspace approach to classically marginal three-dimensional Chern-Simons-matter theories. Considering the specific case of ABJM theory, we describe the origin of such divergences and offer a prescription to eliminate them by introducing non-trivial gauge-fixing terms in the action. We also comment on the extension of our procedure to higher loop order and to general three-dimensional Chern-Simons-matter models.Comment: 26 pages, 6 figures, JHEP3; v2: minor corrections and references added; v3: introduction expanded, presentation of section 3.3.1 improved, references added, version to appear in JHE

    p70 S6 kinase and actin dynamics: A perspective

    Get PDF
    p70 S6 kinase (p70S6K), a member of the AGC serine/threonine kinase family, was initially identified as a key player, together with its downstream effector S6, in the regulation of cellular growth and survival. The p70S6K protein has emerged in recent years as a multifunctional protein which also regulates the actin cytoskeleton and thus plays a role in cell migration. This new function is through two important activities of p70S6K, namely actin cross-linking and Rac1 and Cdc42 activation. The testis is critically dependent on an intricate balance of fundamental cellular processes such as adhesion, migration, and differentiation. It is increasingly evident that Rho GTPases and actin binding proteins play fundamental roles in regulating spermatogenesis within the testis. In this review, we will discuss current findings of p70S6K in the control of actin cytoskeleton dynamics. In addition, the potential role of p70S6K in spermatogenesis and testicular function will be highlighted
    • …
    corecore